Rhesus glycoproteins in dogfish shark (Squalus acanthias) in response to hypo-osmotic stress

Patricia Wright¹, Michael J. Lawrence², Suzanne Currie³, Robyn MacLellan³, Chris Wood² and Susan Edwards⁴

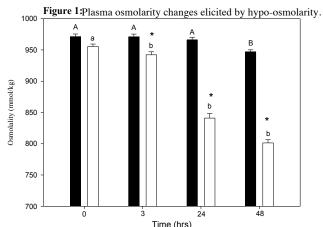
¹Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1

²Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1

³Department of Biology, Mount Allison University, Sackville, NB, Canada E4L 1G7

⁴Department of Biology. Appalachian State University, Boone, NC 28608

Rhesus (Rh) proteins are a new class of ammonia transporters that facilitate NH₃ diffusion. Our aim was to investigate whether the Rh proteins are expressed in dogfish tissues and whether hypo-osmotic stress alters tissue ammonia balance and Rh protein expression. We found that Rhog was expressed in the gill and kidney and tissue ammonia levels did not change with decreased plasma osmolarity. Work is ongoing to quantify Rh protein expression.


Marine elasmobranchs osmoconform by maintaining elevated organic osmolytes, *e.g.*, urea, to counterbalance the saline environment. Ammonia is retained to form glutamine, the nitrogen-donating substrate for urea synthesis. Under hypo-osmotic conditions, urea synthesis is curtailed¹, and excess ammonia may accumulate or be excreted. Since ammonia excretion in teleost fishes is facilitated by Rh proteins², we tested the hypothesis that Rhcg is critical for ammonia retention or excretion in dogfish shark and expression is regulated to maintain ammonia homeostasis with changing external salinity.

Blood was collected from the caudal artery (with MDIBL IACUC approval) after 48-h exposure to dilute (70%) seawater (SW) or control (100%) SW. Plasma osmolarity and urea, ammonia, Na⁺ and Cl⁻ concentrations were determined. Sharks were euthanized; tissues were collected for analysis of urea and ammonia concentrations and Rhcg, Na⁺/H⁺ exchanger (NHE2, NHE3) protein by immunoblot and immunohistochemistry.

Hypo-osmotic stress significantly reduced plasma osmolarity (Fig 1; black bars: Control, white bars: 70% SW). Tissue ammonia concentrations did not change, but plasma and muscle urea concentrations were lower (Table 1). Gill and kidney cells were immunoreactive to hagfish Rhcg antibody (generated by Appalachian State University) with a strong signal in the apical region. This is the first report of tissue localization of Rhcg expression in an elasmobranch.

Table 1. Tissue ammonia and urea concentrations (mM).

		` ′
Tissue	100% Seawater	70% Seawater
Plasma: Ammonia	34.17±9.4	58.94±16.7
Urea	726.53±32.0	575.95±13.0 *
Kidney: Ammonia	531.35± 59.7	532.09±101.2
Urea	608.85±90.5	483.86±-63.3
Muscle: Ammonia	260.15±58.2	303.15±22.8
Urea	720.48±91.5	517.03±78.0 *

Mean \pm SEM (n = 5-7); *P < 0.05 vs. 100% SW, per t-test.

This research was supported by a MDIBL Dave Evans Visiting Faculty Fellowship to PW, an NSERC Discovery grant to PW, SC and CMW and NSF IOS 1121369 to SE.

- 1. **Goldstein L, Forster RP.** Osmoregulation and urea metabolism in the little skate, *Raja erinacea*. *Am. J. Physiol*. 220: 742-746, 1971.
- 2. **Nakada T, Westhoff CM, Kato A, Hirose, S.** Ammonia secretion from fish gill depends on a set of Rh glycoproteins. *FASEB J.* 21: 1067-1074, 2007.