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Heparan sulfate glycosaminoglycans are crucial components of the endothelial cell glycocalyx that constitutes together with 
the endothelial cells, the glomerular basement membrane and the parietal epithelial cells (podocytes) the glomerular filtration 
barrier in the kidney.  The protein heparanase 2 was recently discovered and is speculated to regulate the activity of 
heparanase 1, a protein well known for cleaving heparan sulfate components of the endothelial glycocalyx.  These 
preliminary results demonstrate that knockdown of heparanase 2 in zebrafish causes an edematous phenotype and 
proteinuria, probably by disrupting regulation of heparanase 1. 
 
 Heparanase 1 (HPSE1) has been studied extensively for its role in various different disease pathologies.  Its 
physiologic function is described as an Endo-beta(1-4)-D-glucuronidase that degrades heparan sulfate 
polysaccharide side chains of the glycocalyx covering endothelial cells and basement membranes1.  Several 
independent groups have shown in diverse animal models and humans that heparanase expression is upregulated 
in several primary and secondary glomerular proteinuric diseases, including diabetic nephropathy, IgA 
nephropathy, the heymann nephritis model (MGN) and models for MCD/FSGS, in children affected by steroid 
sensitive syndrome, and in anti-GBM disease2-10.  Whereas HPSE1 has been studied extensively, little is known 
about the more recently discovered heparanase 2 (HPSE2) that was cloned in 200011.  HEPSE2 inhibits HEPSE 
1 in cell culture experiments, and clinical data indicate HPSE2 expression is markedly elevated in head and neck 
carcinoma patients, correlating with prolonged time to disease recurrence12,13.  However, HEPSE2 function 
remains to be elucidated and has not been studied in an in vivo model.  In this study, we examined the role of 
HPSE2 in glomerular and vascular physiology employing a zebrafish model. 
 
 Knockdown of HPSE2 gene was performed by morpholino microinjection into 1 to 4 cell stage zebrafish 
embryos of a transgenic fish line (Tg l-fabp:DBP:eGFP), which produced a green fluorescence vitamin-D 
binding protein.  These fish were compared to injected control morpholino (CTRL) and uninjected wildtype 
(WT) group of fish.  At 72, 96 and 120 hours post-fertilization (hpf); fish were assessed for generalized edema 
and categorized into four subgroups: P1 (no edema) to P4 (severe edema). 

 

 
 

 Injection of HPSE2 morpholino resulted in development of substantial pericardial and yolk sak edema, such 
that most fish could be classified as P3/4 (Fig 1).  In WT1b fish, regular glomerular fusion was seen at 48 hpf 
(Fig 2) excluding a major disturbance in early kidney development by HEPSE2 knockdown.  Edema suggested 
loss of high molecular weight proteins from the vascular system, and loss of colloidosmotic pressure caused 
generalized edema.  We tested this hypothesis by performing at 96 hpf and 120 hpf the fabp eye assay, which 
indirectly measures intravascular content of fluorescent 78 kDa high MW protein DBP in the vasculature of fish. 
 
 We observed a significant decrease in fluorescence levels in the eye as compared to wild type and control 
morpholino injected fish (Fig 3). There was greater loss of fluorescence at increasing morpholino 
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The knockdown of HPSE2 gene was performed by morpholino microinjection into 1 to 4 cell stage 
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vitamin-D binding protein. These fish were compared to injected control morpholino (CTRL) and uninjected 
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The injection of HPSE2 morpholino resulted in the development of substantial pericardial and yolk sak 
edema, so that most fish could be classified as P3/4  (see Fig. 1). In the WT1b fish line regular glomerular 
fusion was seen at 48hpf (see Fig. 2) excluding a major disturbance in early kidney development by HEPSE2 
knockdown. The existence of edema suggests that high molecular proteins are lost from the vascular system 
and through the loss of colloidosmotic pressure cause the development of generalized edema. To test for this 
hypothesis we performed the fabp eye-assay at 96 hours and 120 hours post fertilisation, which is indirectly 

F igure 1. The knockdown of HPSE2 gene causes an 
edematous phenotype that is not seen in WT and 
control fish. 

F igure 2. Glomeruli of the pronephros fuse at about 48hpf as 
shown in the WT1b fish, this is not influenced by HEPSE2 gene 
knockdown. 
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Figure 1. Knockdown of HPSE2 gene causes 
an edematous phenotype that is not seen in 
WT and control fish.	
   Figure 2. Glomeruli of the pronephros fuse at ~48 hpf as shown 

in the WT1b fish; this is not influenced by HEPSE2 knockdown.	
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concentrations, suggesting a dose dependence of gene knockdown.  These results indicated the glomerular 
filtration barrier is indeed compromised by HEPSE2 knockdown and that proteinuria occurs as a sequela of that. 

 
 
 
 
 
Figure 3. HPSE2 morpholino injected groups had a lower overall 
fluorescence level as compared to the CTRL and WT groups, indicating 
loss of high molecular weight plasma proteins into the urine due to 
damage to the glomerular filtration barrier.  Loss of fluorescence was 
dose-dependent.  **p < 0.01, ***p < 0.001; data are mean ± SE.	
  
 
 
 
 
 
 

 These data demonstrated a significant role for HPSE2 in the structural integrity of the glomerular filtration 
barrier.  Further experiments are needed to better understand the exact function of this novel gene and will help 
unravel a novel mechanism involved in causing glomerular injury and acute as well as chronic kidney disease. 
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measuring the intravascular content of the fluorescent 78 kDa high molecular weight protein DBP inside the 
vasculature of the fish.  

 
We could show a significant decrease in fluorescence levels in the eye compared to wild type and control 

morpholino injected fish (see Fig. 3). In this set of experiments we could observe a higher loss of 
fluorescence at increasing morpholino concentrations, suggesting a dose dependence of gene knockdown. 
These results indicate that the glomerular filtration barrier is indeed compromised by knockdown of HEPSE2 
and that proteinuria occurs as a sequela of that.  

 
 

 
 
 

 
The data from the performed experiment demonstrate a significant role for HPSE2 in the structural 

integrity of the glomerular filtration barrier. Further experiments will be needed to better understand the 
exact function of this novel gene and this might contribute to unravel a novel mechanism involved in causing 
glomerular injury and acute as well as chronic kidney disease.   
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F igure 3. HPSE2 morpholino injected groups had a lower 
overall fluorescence level in contrast to the CTRL and WT 
group indicating loss of high molecular weight plasma 
proteins into the urine due to damage to the glomerular 
filtration barrier integrity. This loss of fluorescence showed a 
dose dependency. 
** p<0.01, ***p<0.001, showed are means ± SEMs 


	Bulletin MDIBL v54 2015 Complete_Part13
	Bulletin MDIBL v54 2015 Complete_Part14

