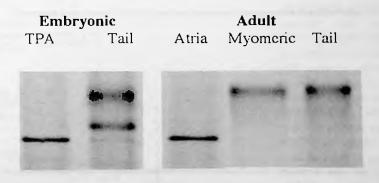
Myosin heavy chain expression in the specialized embryonic tail appendage of the skate, Leucoraja erinacea


Fred Schachat¹, Linhua Song¹, Thomas Koob² and John H. Long³

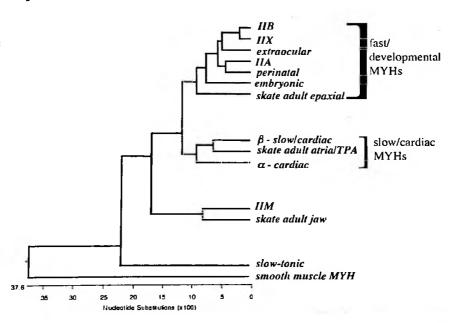
¹Department of Cell Biology. Duke University Medical School, Durham, NC 27710
²Shriner's Hospital for Children, Tampa. FL 33607
³Biology Department. Vassar College. Poughkeepsie, NY 12604

The North Atlantic skate. *Leucoraja erinacea*, lays its fertilized eggs in a horny capsule. Commonly known as a mermaid's purse, the sclerotized opaque capsule conceals the embryo and protects it from predators. This protection has a cost: the capsule severely limits the diffusion of oxygen needed for growth. To obtain sufficient oxygen for development, the skate embryo propels sea water through small slits that form in the outer edge of the horns on the capsule's periphery. Effective ventilation is accomplished by steady undulatory flexures of a caudal, post-dorsal fin extension of the embryonic tail. Which we have designated the tail pump appendage (TPA). We predict that the TPA, which is an embryonic structure that appears to be resorbed after hatching, will express contractile proteins that differ from those of the myomeric and tail muscles, reflecting the optimization of the TPA for virtually continuous contractile activity.

Because myosin is the major determinant of the contractile properties of striated muscle, we focus here on the expression of myosin heavy chains (MYH) in the TPA. SDS-PAGE analysis was used to resolve MYHs from different skate muscles. As shown in Figure 1, when homogenates of several embryonic and adult skate muscles are electrophoresed on gels designed to separate MYHs, (Talmadge et al. ⁴), a single MYH species predominates in the TPA. This MYH comigrates with the atrial MYH, but is readily resolved from those present in the embryonic pre-dorsal fin tail and adult myomeric and tail muscle. The comigration of the atrial and TPA MYHs suggested that the TPA MYH might be a member of the slow/cardiac family of MYHs that are expressed in vertebrate heart and slow striated muscle, both of which are specialized for persistent contractile activity.

Fig. 1. SDS-PAGE electrophoresis of skate embryonic and adult myosin heavy chains. Analysis of MYHs revealed a single MYH variant in the embryonic TPA that differs in mobility from the MYHs in adult tail muscle and myomeric muscle, but is similar in mobility to that of adult atria.

The MYHs of the TPA, atrial, and other skate MYHs were further assessed by sequence analysis of RT-PCR products. Total RNA was isolated from the TPA and several embryonic and adult muscles, and cDNAs were generated using degenerate oligonucleotide primers (Ruiz-Trillo et al.*) that bind to highly conserved sequences flanking a functionally important and diagnostically variable region of the myosin head. cDNAs sequences were determined directly, when a single MYH predominated, or by subcloning and sequencing of several clones, when multiple MYH mRNAs were present (as described in Briggs et al. ¹). The inferred amino acid sequences are presented in Figure 2.


Fig. 2. The inferred
amino acid sequences of
MYH PCR products
generated from different
skate embryonic and
adult striated muscles.
The amino acid
sequences of the TPA
and adult atrial muscles
are identical, as are their
nucleic acid sequences.
"," indicates sequence
identity: "-" indicates
the insertion of gaps for
alignment by Clustal W.
anginian sy ciusiai wi

Embryonic TPA Adult atria Adult epaxial Adult jaw	KLOOFFNHHMFVLEOEEYKKEGIEWEFIDFGMDLOACIDLIEKPMGIM
Embryonic TPA Adult atria	SILEEECMFPKASDOTFKAKLYDNHLGKSANFOKPRVVKGKPEAHFGL
Adult epaxial Adult jaw	Q.VT.AANLKPS.
Embryonic TPA Adult atria	AHYAGTVDYN!MGWLOKNKDPLNETVVGLYOKSSVKLLAVLFANYAGA
Adult epaxial Adult jaw	NTDIFGT.YVAP VG.STOEFQAPIK
Embryonic TPA	DGTTEKKGTK-KKGSSFQTVSALHRENLNKLMANLRSTHPHFVRC!IP
Adult atria	
Adult epaxial	EDS.K.AGFGTL
Adult jaw	EEE.PAG.K.O

Aligning these sequences with Clustal W (DNAStar, Madison, WI) reveals that those from the TPA and adult atrial MYHs are identical, as were their nucleic acid sequences (data not presented). In contrast, the TPA and adult atria sequences differ from those in the adult epaxial and jaw muscles.

Clustal W analysis was also used to determine the molecular phylogeny of the skate MYH sequences by comparing them with the corresponding human striated MYH sequences (Figure 3). This shows that the virtually continuous activity of the TPA is reflected in the expression of a member of the "slow/cardiac" family of MYHs.

3. Sequence relationship between the skates and human MYHs. Human was chosen for comparison because its' genome has been sequenced, and all its striated MYH genes identified. Clustal W analysis reveals that the skate adult atria/TPA sequence is most closely related to the human cardiac/slow MYHs. The families fast/developmental and slow/ cardiac MYHs are indicated

In conclusion, these studies show that a single MYH is expressed in the specialized embryonic post-dorsal fin TPA of L. erinacea. This MYH differs from those that predominate elsewhere in the embryonic and adult skate tail and myomeric muscle; however, it is homologous with the vertebrate

slow/cardiac family of MYHs. These studies also reveal that the skate myomeric muscle expresses MYHs that are homologous with the fast/developmental MYHs and the IIM myosin in its jaw muscle.

The expression of a member of the slow/cardiac family of vertebrate MYHs in the TPA confirms our expectation that it is specialized for its virtually continuous contractile activity in propelling sea water though the skate egg case to ventilate the embryo.

This research was funded by grants from the Shriners Hospitals for Children (8610) to Dr. Koob, the NSF (BCS 0320764 and DBI 0442269) to Drs. Long and Koob, and the Foundation for Health Sciences (FHS 1011) to Dr. Schachat.

- 1. Briggs, M.M. and Schachat, F. Physiologically regulated alternative splicing patterns of troponin T are conserved in mammals. *Am. J. Physol.* 270, C298-C305, 1996.
- 2. Long, J.H. Jr. and T.J. Koob. Ventilating the skate egg capsule: the transitory tail pump of embryonic little skates (Raja erinacea). The Bulleting, Mount Desert Island Biological Laboratory 36: 117-119, 1997.
- Ruiz-Trillo, I., J. Paps, M. Loukota, C. Ribera, U. Jondelius, J. Baguna and M. Riutort. A phylogenetic analysis
 of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. *Proc. Nati. Acad. Sci.*, 99, 11246-11251, 2002.
- 4. Talmadge, R.J., R.R. Roy and V.R. Edgerton. Persistance of hybrid fibers in rat soleus after spinal chord transection. *Anat. Rec.* 225, 188-201, 1999.