CORTISOL INCREASES CARBONIC ANHYDRASE ACTIVITY IN WINTER FLOUNDER RENAL PROXIMAL TUBULE PRIMARY CULTURES

J. Larry Renfro¹, Sonda Parker¹, David Bailey¹, Alice R. Villalobos², and Paul Dudas¹ Department of Physiology and Neurobiology, University of Connecticut, CT 06269 ²Department of Environmental Medicine, University of Rochester, Rochester, NY 14642

Carbonic anhydrase (CA) facilitates the active secretion of inorganic sulfate (S_i) by winter flounder (*Pleuronectes americanus*) renal proximal tubule epithelium in primary monolayer culture (PTC) (Renfro, J.L. et al. Am. J. Physiol. 276:F288-F294, 1999). Preliminary data indicate that the "seawater-adapting" hormone, cortisol, stimulates a methazolamide-sensitive component of active S₁ secretion. In the present study CA activity was determined in PTCs continuously exposed to 100 µg/ml cortisol vs. tissue maintained for five days with no added cortisol. Table 1 shows that CA activity was almost 30% lower when cortisol was removed. This decline in CA activity coincides with a 25% decrease in net S₁ secretion by similarly treated PTCs (Renfro. J.L. et al., Bull MDIBL 39:88-89, 2000). Figure 1 shows that a polyclonal antibody to human CAll stains a specific fraction in rat as well as flounder RBCs, cells expected to be rich in CAII. A CAII band is also readily apparent in PTCs (two middle lanes). In tissues treated by cortisol removal, the pixel density ratio of CAII to actin (a reflection of variable extraction vol-

			-	-	Actin	Table 1. CA Activity in flounder renal proxi- mal tubule primary monolayers is lowered by removal of cortisol.	
						Treatment	CA activity (U/µg protein)
	Summer Summer Street St.			CONTRACTOR .	CA II	Cortisol	16.0 ± 3.36
	Rat Blood	No added Cortisol	Cortisol	flounder Blood		No-added Cortisol	11.5 ± 2.69*
	Figure 1. Western blot of carbonic anhydrase II					ndard error (n = 3 prepa 0.1 mg/ml. No-added	

activity in winter flounder PTCs (middle two lanes). Blots were probed with sheep anti-human CAII primary antibodies and monoclonal antimouse actin clone AC40.

Cortisol	$11.5 \pm 2.69^*$
Values are mean ±	standard error (n = 3 prepa-
rations). Cortisol	was 0.1 mg/ml. No-added
cortisol was begun	5 days before tissues were
harvested for assay	v. *Significantly different at
P < 0.05 from cort	isol treated by paired t-test.

ume) was about one-half that of tissues undergoing continuous cortisol exposure. These preliminary data further support the possibility that cortisol stimulation of S₁ secretion coincides with a cortisol stimulated increase in CA II enzyme content and activity in the renal epithelium. Supported by NSF-IBN9604070, NSF-IBN9808616 and NSF-IBN0078093.