EVIDENCE FOR HCO₃ '/Cl'-EXCHANGE MEDIATED HCO₃ 'SECRETION IN THE RECTAL GLAND OF SQUALUS ACANTHIAS

Martin J. Hug, Dirk Heitzmann, Markus Bleich and Rainer Greger Physiologisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany

Last year we have analyzed the pH regulatory systems of isolated in vitro perfused rectal gland tubules of Squalus acanthias (Bleich, M. et al. Pfluegers Arch Eur J Physiol 436:248-254, 1998). We found that pH homeostasis is achieved by two transport systems in the basolateral membrane: Na⁺/H⁺ exchange which is inhibited by HOE 694 (0.1 mmol/l), and, as we have examined now, also by ethylisopropyl-amiloride (EIPA, IC₅₀ 30 μmol/l, n = 5). The other basolateral transport system is probably a Na⁺-2HCO₃⁻/Cl⁻ exchanger which serves for HCO₃⁻ import. Hence recovery from an acid load by these two systems is entirely Na⁺ dependent. In the presence of HCO₃⁻ (20 mmol/l, 2% CO₂, pH 7.5) a large fraction of the realkalinization rate occurs via Na⁺-2HCO₃⁻/Cl⁻ exchange and only a minor fraction by Na⁺/H⁺ exchange. We also provided preliminary evidence for the existence of luminal HCO₃⁻/Cl⁻ exchange. Now we have examined this aspect in more detail and specifically asked whether HCO₃⁻ can be secreted by this system.

The experiments were performed in isolated and *in vitro* perfused rectal gland tubules (RGT) (Greger, R. and Schlatter E. Pfluegers Arch Eur J Physiol 402:63-75, 1984). In most of the experiments the RGT were loaded with BCECF-AM and 488/439 fluorescence ratio (BCFR) corresponding to cytosolic pH was monitored by a system described in detail previously (Bleich, M. et al. Pfluegers Arch Eur J Physiol 436:248-254, 1998). The calibration function was pH = (BCFR + 2.93)/0.6, n = 6.

The RGT were acid loaded by the NH_4^+/NH_3 (20 mmol/l) pulse technique (Warth, R. et al. Pfluegers Arch Eur J Physiol 436:521-528, 1998). The addition of NH_4^+/NH_3 led to an initial significant increase in BCFR from 1.31 ± 0.02 to 1.46 ± 0.02 and thereafter to an exponential fall to 0.99 ± 0.01 (n = 94). BCFR fell further when NH_4^+/NH_3 was removed to 0.74 ± 0.01 (n = 93). In the absence of HCO_3^- and when in addition Na^+ was reduced to 5 mmol/l on the blood side very little pH recovery was seen. The rate of BCFR increase (rate of recovery = $\Delta BCFR/min$) was 0.017 ± 0.007 (n = 31). This rate of recovery was increased markedly when HCO_3^- was added to the luminal perfusate: 0.16 ± 0.019 (n = 33). This effect of luminal HCO_3^- was blocked almost completely by luminal DIDS (0.1 mmol/l) and the recovery rate was reduced to 0.055 ± 0.018 (n = 15). This indicates that HCO_3^- , under these conditions can be taken up from the lumen and is compatible with the presence of HCO_3^-/Cl^- exchange.

Next we examined whether stimulation of Cl⁻ secretion by 0.5 mmol/l cAMP, 0.5 mmol/l adenosine and 10 μ mol/l forskolin (Stim) has any impact on pH recovery. We found that Stim reduced BCFR slightly but significantly from 1.36 \pm 0.04 to 1.29 \pm 0.05 (n = 11). The recovery rate was again very low in the absence of HCO₃⁻ and with low basolateral Na⁺: 0.044 \pm 0.017 (n = 12). Addition of luminal HCO₃⁻ increased this rate markedly to 0.73 \pm 0.20 (n = 12). A reduction of the luminal Na⁺ concentration from 278 to 5 mmol/l had no influence on the rate of recovery:

 0.60 ± 0.16 (n = 9). These data are qualitatively similar to that observed in the absence of Stim. Furthermore the data suggest that luminal HCO₃⁻/Cl⁻ exchange is Na⁺ independent.

Next we examined whether HCO_3^- is secreted by this luminal exchanger under normal conditions. To this end BCFR was measured in the presence of luminal and basolateral Na^+ . BCFR was 1.25 ± 0.04 (n = 16) in the absence of basolateral HCO_3^- and was increased significantly by the basolateral addition of HCO_3^- to 1.36 ± 0.04 (n = 14). The addition of DIDS (0.1 mmol/l) to the luminal perfusate increased BCFR further to 1.43 ± 0.04 (n = 14). These data suggest that inhibition of luminal HCO_3^- /Cl exchange alkalinizes the cells because HCO_3^- secretion is inhibited.

To measure this HCO_3^- secretion more directly the lumen was perfused with anionic BCECF (membrane impermeable) and luminal fluorescence ratio was monitored. A typical experiment is shown in Fig. 1. It is evident that the addition of HCO_3^- to the bath leads to a marked increase in BCFR, directly showing the secretion of HCO_3^- . This experiment also shows that this alkalinization really occurs in the lumen an was not caused by contaminating cytosolic fluorescence, because the addition of NH_4^+/NH_3 to the bath only led to a rather slow alkalinization and not to the usual transient consisting of an initial alkalinization and a marked secondary acidification (cf. above). In a larger series of experiments the addition of HCO_3^- to the bath increased BCFR from 1.28 ± 0.03 to 1.39 ± 0.04 (n = 26).

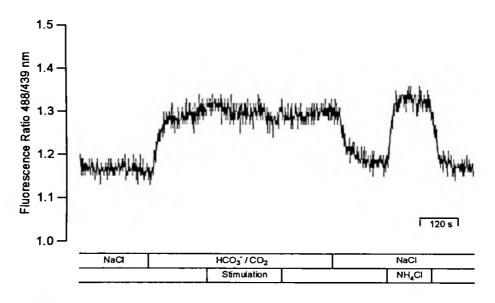


Figure 1: BCECF-fluorescence measurement in the lumen of an isolated perfused recal gland tubule of *Squalus acanthias*.

These data can be summarized as follows. In addition to the pH homeostatic systems in the basolateral membrane (Na[†]/H[†] exchange and Na[†]-2HCO₃[†]/Cl[†] exchange) rectal gland tubules possess a HCO₃[†]/Cl[†] exchanger in the luminal membrane. This exchange is Na[†] independent and is inhibited by DIDS. The HCO₃[†]/Cl[†] exchanger can, depending on the experimental conditions, operate as a HCO₃[†] uptake and a HCO₃[†] extrusion system. Physiologically it will mainly serve HCO₃[†] secretion. In fact, Swenson and Maren (Swenson, E. and Maren, T. Am J Physiol

253:R450-R458, 1987) have shown many years ago that RG cells secrete HCO₃ during metabolic alkalosis.

The constellation of CFTR-type Cl conductance in the luminal membrane in conjunction with HCO₃/Cl exchange is reminiscent of the pancreatic duct (Novak, I. and Greger, R. Pfluegers Arch Eur J Physiol 411:546-553, 1988) where the parallel arrangement of both transporters als serves HCO₃ secretion.

Supported by Deutsche Forschungsgemeinschaft: grant Gr 480/13 to RFG.