REGULATION OF SODIUM-DEPENDENT PHOSPHATE COTRANSPORTER IN H4IIE HEPATOMA CELLS BY HEAVY METALS

Ziad Nabih and Zijian Xie Department of Pharmacology, Medical College of Ohio, Toledo, OH 43699

We have shown recently that type I Na/P; cotransporter (NaP;-1) in rat hepatocytes are regulated by insulin through metabolic signaling (Li, H. et al., Am. J. Physiol. 271, E1021, 1996). Although it is well established that heavy metals regulate cell metabolism, the effects of heavy metals on gene expression regulation through altering metabolic signals have not been addressed. The aim of this work is to determine the long-term effects of heavy metals on Na/P_i cotransporter in H4IIE hepatoma cells. When serum-starved H4IIE cells were exposed to three different heavy metals and assayed for Na-dependent P. transport activity as previously described (Li, H. et al., Am. J. Physiol. 271, E1021, 1996), HgCl₂ and CdCl₂, but not ZnCl₂ caused a dose-dependent stimulation of Na/P. cotransport activities in these cells. Significant stimulation by HgCl₂ was observed at 0.2 μM and reached maximum at 5 μM. Concentrations higher than 10 μM caused cell dealth. CdCl₂ appeared to be equally potent as HgCl₂, and caused maximum stimulation at 1 µM. When time-dependent changes in Na/P, cotransport activity in response to 5 µM HgCl₂ were determined, significant stimulation (115% of control) was observed after 6 h incubation, and reached a maximum (162%) after 24 h incubation. To correlate changes in transport activity to NaPi-1 expression, Northern blot analysis was done after the cells were exposed to different concentrations of HgCl₂ for 24 h. It was found that HgCl₂ acted as insulin, and increased steady state levels of NaP.-1 mRNA in H4IIE cells in a dose-dependent manner. After 24 h exposure, 5 µM HgCl₂ caused a 2.4-fold increase in NaP_i-1 mRNA over control. These data indicate that HgCl₂ and CdCl₂ may regulate Na/P_i cotransport activity through up-regulation of NaP-1 gene expression. It remains to be determined whether HgCl2 and CdCl2 use a similar signaling pathway as insulin in regulation of NaP;-1 gene. Supported by MDIBL New Investigator Award to Z.X..