EFFECT OF Hg²⁺ ON CYTOSOLIC Ca²⁺ IN HEPATOCYTES ISOLATED FROM THE LITTLE SKATE <u>RAJA ERINACEA</u>

Michael H. Nathanson¹, Kavita Mariwalla¹, Robin M. Jones², Jurgen Kaljuvee³,
Nazzareno Ballatori⁴, and James L. Boyer¹

¹Liver Study Unit, Yale University School of Medicine, New Haven, CT 06520,

²Spelman College, Atlanta, GA 30135,

³Wesleyan College, Middletown, CT 06459, and

⁴Dept. of Environmental Med., Univ. of Rochester School of Medicine, Rochester, NY 14642

Hg²⁺ is an environmental pollutant that adversely affects a number of secretion-related functions in skate hepatocytes, including cell volume regulation, Na⁺-alanine co-transport, and plasma membrane ion permeability. Cytosolic Ca²⁺ (Ca_i²⁺) regulates secretion in many other types of tissue, and our preliminary work suggests that ATP-induced Ca_i²⁺ signals regulate bile secretion in skate liver as well. The purpose of this study was to examine whether Hg²⁺ affects Ca_i²⁺ in isolated skate hepatocytes, and if so, to define the responsible mechanisms. Hepatocytes were isolated by collagenase perfusion, then loaded with the Ca²⁺-sensitive dye indo-1 and examined by ratio spectrofluorometry using a Perkin-Elmer LS-5B spectrometer. Results. At lower concentrations (100 nM-5 µM), Hg²⁺ induced no detectable change in Ca_i²⁺. At higher concentrations (10 µM-1 mM), Hg²⁺ induced a dose-dependent, progressive increase in Ca_i²⁺ (Figure 1). This Ca_i²⁺ increase began within seconds after addition of Hg²⁺ and occurred even in Ca²⁺-free medium. Pre-treatment of hepatocytes with the membrane-impermeant Hg²⁺ chelator glutathione (GSH, 5 mM) blocked hepatocytes with the membrane-impermeant Hg²⁺ chelator glutathione (GSH, 5 mM) blocked the Ca_i²⁺ increase induced by 50 µM Hg²⁺, while addition of GSH 2 min after exposure to Hg²⁺ slowed but did not prevent further increases in Ca_i²⁺. As with GSH, pre-treatment with the membrane-permeant Hg²⁺ chelator dithiothreitol (DTT, 500 µM) blocked Hg²⁺-induced increases in Ca_i²⁺. Unlike GSH, however, addition of DTT 2 min after 50 µM Hg²⁺ significantly decreased Ca_i²⁺, returning it to near-baseline levels. The Ca²⁺-ATPase inhibitor thapsigargin (2 µM) caused a sustained increase in Ca_i²⁺, and addition of Hg²⁺ resulted in a further, progressive Ca_i²⁺ increase. Stimulation of hepatocytes with a maximal concentration of ATP (100 µM) increased Ca_i²⁺ as well, after which addition of Hg²⁺ also resulted in a further, progressive Ca_i²⁺ increase. Acute effects of Hg²⁺ on toxicity were examined in two ways. First Hg²⁺ (100 µM) induced no increase in propridium indide uptake over 4 min relative to First, Hg²⁺ (100 µM) induced no increase in propidium iodide uptake over 4 min, relative to untreated (control) hepatocytes. Second, no morphological changes were detected by light microscopy in Hg²⁺-treated hepatocytes over this same time period. Summary. Together, these findings suggest: (1) Hg²⁺ increases Ca_i²⁺ in skate hepatocytes, (2) Hg²⁺ must enter the hepatocytes for this Ca_i²⁺ increase to occur, and (3) this increase is mediated by release of Ca²⁺ from endogenous stores that are distinct from the thapsigargin-sensitive, ATP-mobilizable Ca²⁺ stores. Furthermore, this acute effect of Hg²⁺ on Ca₁²⁺ does not cause or result from acute toxicity to hepatocytes. Additional work will be needed to define the intracellular source from which Hg²⁺ releases Ca²⁺ into the cytosol, and to determine if previously described effects of Hg²⁺ on hepatocyte metabolism are mediated by these Hg²⁺-induced Ca;²⁺ signals. Acknowledgements. This work was supported by a Young Investigator Award (to MHN) from the Center for Membrane Toxicity Studies (P30 ES03828), a Fiterman Award for Basic Research (to MHN) and a Student Research Award (to KM) from the American Gastroenterological Association, a Liver Scholar Award from the American Liver Foundation (to MHN), and the Hepatocyte Isolation and Morphology Core Facilities of the Yale Liver Center (P30 DK34989).

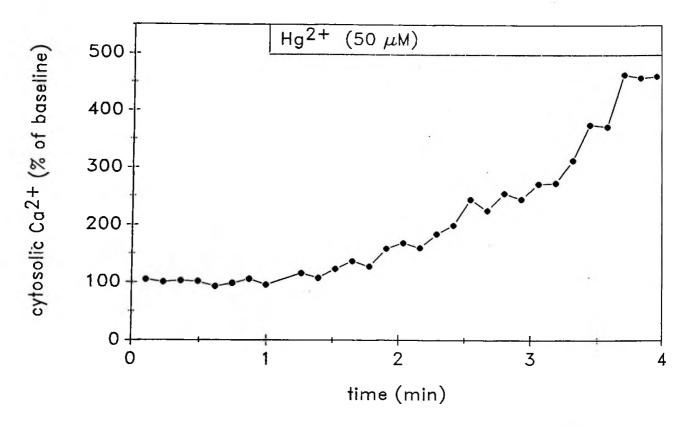


Figure 1. Effect of 50 μ M Hg²⁺ on Ca_i²⁺ in isolated skate hepatocytes. Hg²⁺ induces a progressive increase in Ca_i²⁺ after a brief delay period. Pattern is typical of that seen in n=5 separate experiments.