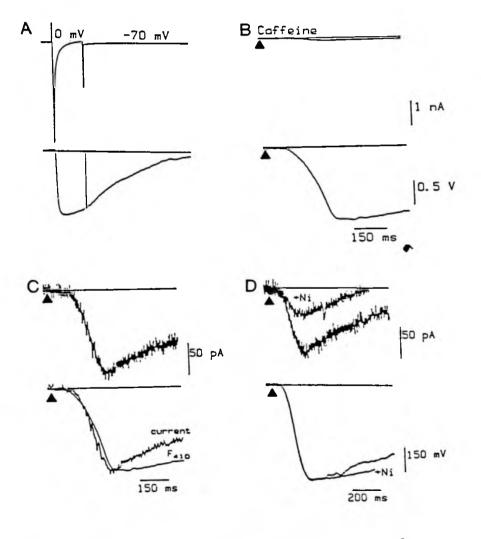
CAFFEINE-INDUCED Ca^{2+} RELEASE STIMULATES Ca^{2+} EFFLUX VIA THE Na⁺-Ca²⁺ EXCHANGER IN SINGLE MAMMALIAN CARDIAC MYOCYTES.

Geert Callewaert, Lars Cleemann and Martin Morad Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104

Brief exposures to caffeine in mM concentration induce a small transient inward current in atrial 'cardioballs' and embryonic heart cells (S. Mechmann and L. Pott, Nature <u>319</u>:597-599, 1986; W.T. Clusin, R. Fischmeister, G. DeHaan, Am. J. Physiol. <u>245</u>:H528-H532, 1983). This current was thought to be generated by the Na⁺-Ca²⁺ exchanger as Ca²⁺ released from the sarcoplasmic reticulum was sequestered from the sarcoplasm through the surface membrane in exchange for Na⁺. To test this hypothesis we carried out experiments where the inward current was compared directly to the intracellular Ca²⁺ transient measured with the fluorescent metallochromic dye fura-2.

Single rat and guinea pig ventricular myocytes were prepared by enzymatic dissociation. The cells were voltage clamped using the whole cell technique. The patch pipette had a resistance of 1 to 4 Mohm and was filled with a solution containing 120 mM CsCl, 20 mM TEACl, 5 mM MgATP, 0.1 mM cAMP, 10 mM Hepes (pH 7.2) and 0.4 mM K₅ fura-2. Fura-2 distributed itself uniformly within the cell and was used with dual wavelength excitation (335 nm and 410 nm) to measure intracellular Ca^{2+} activity. The standard extracellular solution contained 140 mM NaCl, 5.4 mM KCl, 3 mM CaCl₂, 0.5 mM MgCl₂, 10 mM Hepes (pH 7.4) and 10 mM glucose and could be exchanged rapidly using a multibarrel pipette with a common outlet (200 um) placed directly over the cell under investigation.

Figure 1 compares the Ca^{2+} transients generated in a rat ventricular myocyte either by a depolarizing voltage clamp pulse from -70 to 0 mV (Panel A) or by fast application of 5 mM caffeine at a fixed holding potential of-70 mV (Panel B). The Ca^{2+} transient elicited by depolarization (lower trace) rose with a halftime of about 15 msec and was gated by the Ca^{2+} current, i.e. like the Ca^{2+} current it activated around -50 mV, reached a maximum at 0 mV and decreased to a very low value with further depolarization to +80 mV. The extracellular application of caffeine evoked a larger Ca^{2+} transient which had a much slower rise time (halftime 150 ms) and relaxed spontaneously with a halftime of 2.5 s. This signal was accompanied by a transient inward current which is barely noticeable when seen on the same scale as the Ca^{2+} current (cf. panels A and B). When expanded it is clear, however (Panel C), that this current (upper trace) develops with nearly the same time course as the Ca^{2+} transient (lower traces).


Experiments were also carried out to test if interventions which block $Na^+ \cdot Ca^{2+}$ exchange also blocked the transient inward current. One such experiment is shown in Panel D. Ni^{2+} was added in a concentration, 5 mM, which is known to markedly inhibit $Na^+ \cdot Ca^{2+}$ exchange (J. Kimura, S. Miyamae, A. Noma, J. Physiol. <u>384</u>: 199-222, 1987). This reduced the transient inward current by 60% (upper traces) but had little effect on the caffeine induced intracellular Ca^{2+} transient. Notice also that the Ca^{2+} transient signal relaxes much more slowly in the presence of Ni^{2+} . This confirms the notion that removal of intracellular Ca^{2+} via the $Na^+ \cdot Ca^{2+}$ exchanger is blocked. In another series of experiments the extracellular Na^+ was replaced by TEA⁺ in order to block the outward movement of Ca^{2+} via the $Na^+ \cdot Ca^{2+}$ exchanger. As anticipated this had little effect on the Ca^{2+} transients but did eliminate the transient current.

The magnitude of the transient inward current was about 100 pA and lasted about 2 s, thus carrying 200 pC or 2×10^{-15} equivalents across the membrane. With 3 Na⁺ ions being exchanged for each Ca²⁺ ion, we therefore estimate that 2 fmole of Ca²⁺ is being removed from the cell. The cell volume is about 10 um \star 20 um \star 100 um or 20 pliter and the cell therefore contains 0.4 mM \star 20 pliter - 8 fmole of fura-2. This suggests that a noticeable fraction of the Ca²⁺ bound to fura-2 may be removed by the Na⁺-Ca²⁺ exchanger and that the measured inward current transients are of the expected order of magnitude.

These results show that the transient inward current (1) has a time course similar to that of the intracellular Ca^{2+} transients, (2) is blocked by interventions which block Na^+-Ca^{2+} exchange without affecting the intracellular Ca^{2+} transients, and (3) has a magnitude consistent with the estimated Ca^{2+} movements. Our results are consistent with the idea that the caffeine induced inward current transients are generated by the Na^+-Ca^{2+} exchanger.

Supported by NIH Grants HL-33720 and HL-16152.

<u>Figure 1</u>. Membrane current and intracellular Ca^{2+} transients in a rat ventricular myocyte exposed to voltage clamp depolarization (Panel A) or rapid perfusion with 5 mM caffeine (Panels B, C and D). Each panel shows the membrane current at the top and the fura-2 signal measured with 410 nm excitation at the bottom. this At wavelength addition of Ca²⁺ gives decreasing fluorescence so that a deflection downward corresponds to increasing Ca²⁺ activity. Ratio measurements based on simultaneous measurements with excitation at 335 nm and 410 nm indicate that the depolarization-induced release in panel A Ca^{2+} increased the activity from 50 nM to 250 the caffeinenM while induced release in panel B resulted in a peak Ca²⁺ of 1100 activity nM. Panel С compares the timecourse of the

caffeine-evoked transient inward current to that of the intracellular Ca^{2+} transient. Panel D shows that 5 mM Ni²⁺ decreases the Na⁺-Ca²⁺ exchange but has little effect on the caffeine-induced Ca²⁺ release.