George M. Feldman and Scott McCallum
Depart. of Med., Univ. of Penn. and Med. Cntr., Phila., PA 19104

In previous studies, slices of rectal gland from <u>Squalus acanthias</u> swelled when bathed in elasmobranch Ringer's medium containing propionate, and amiloride, an inhibitor of Na^+/H^+ exchange, inhibited propionate—induced swelling (Feldman et al, Bull. MDIBL 27: 108, 1987-88). These results suggested that the rectal gland has Na^+/H^+ exchange activity. To further characterize Na^+/H^+ exchange, we evaluated cell pH during exposure to propionate and the Na^+ requirement for cell swelling.

Rectal gland tubules in suspension were utilized for cell pH (pH,) measurements, utilizing the рH sensitive fluorescent probe (2',7')bis(carboxyethyl)-(5,6)-carboxyfluorescein (BCECF, Molecular Probes, OR). Tubules were prepared by incubating tissue slices in elasmobranch saline that contained collagenase, 2 mg/ml (Type II, Sigma), and 1% bovine serum albumen. At 15°C tubules were: loaded with membrane permeable BCECF-AM (2 $\mu g/ml$ for 1 hour), washed, resuspended, and studied in a spectrofluorometer. Fluorescence emission was measured at 526 nm, while excitation was alternately 504 nm and 440 nm in order to obtain the pH dependent and the concentration independent fluorescence intensity ratio, F_{504}/F_{440} . To calibrate, tubules were in medium containing 2 μ g/ml of nigericin and approximating intracellular cation content (50 mM Na $^+$, 130 mM K $^+$ and a poorly permeable cation, Nmethylglucamine) while medium pH was altered (Thomas et al, Biochem. 18: 2210, 1979). The F_{504}/F_{440} ratio correlated with medium pH from pH 6.5 to 7.9. BCECF leak was reduced with probenecid; in preliminary studies, 4.5 mM probenecid reduced leak from > 2 %/min to < 0.2 %/min. Cell volume was measured in tissue slices as previously described. Data is mean ±S.E.

In medium of pH 7.4, rectal gland tubules maintained pH_i at 7.12 ± 0.02 (6 preparations). Exposure of tubules to propionate medium (pH 7.4) rapidly decreased pH_i to 6.60 ± 0.04 (p < 0.01), suggesting that propionic acid diffuses into the cell. Following initial acidification, pH_i returned toward normal attaining a value of 6.85 ± 0.03 after 8 minutes. Although 1 mM amiloride did not inhibit propionate-induced cell acidification, amiloride inhibited the recovery of pH_i, and pH_i remained less than 6.5 (below the calibration range), suggesting that Na^f/H⁺ exchange was responsible for the recovery of pH_i. In support of propionic acid diffusion, ¹⁴C-propionate accumulated in tissue slices more rapidly at acid pH. After 5 minutes in 10 mM propionate at pH 6.5, 7.4 and 7.8, apparent cell propionate concentrations were 9.1 ± 0.9 , 7.7 ± 0.4 and 5.8 ± 0.4 mM, respectively.

The Na⁺ requirement for swelling was examined. Replacing medium Na⁺ with N-methylglucamine (NMG) prevented swelling: Na⁺ propionate, $3.95\pm0.05~kg$ H₂O/kg DW vs NMG propionate, $2.77\pm0.05~kg$ H₂O/kg DW, p<0.001, n=5. However, Li⁺, a Na⁺ congener for Na⁺/H⁺ exchange activity, but not Na⁺-K⁺ ATPase activity, did not prevent swelling: Na⁺ propionate $3.97\pm0.04~kg$ H₂O/kg DW vs Li⁺ propionate $4.07\pm0.04~kg$ H₂O/kg DW. In Li⁺ and Na⁺ media, 1 mM amiloride inhibited swelling comparably, 32% and 40%, respectively, as did another inhibitor of Na⁺/H⁺ exchange, $10^{-4}~M$ dimethylamiloride. Thus, propionate-induced cell swelling requires Na⁺ and Na⁺ entry is via Na⁺/H⁺ exchange.

These results support the existence of Na^+/H^+ exchange in the rectal gland of <u>Squalus acanthias</u>. Upon exposure to propionate, Na^+/H^+ exchange activity is required for pH_1 regulation and cell swelling, and inhibition of Na^+/H^+ exchange activity inhibits both pH_1 homeostasis and cell swelling.

This study was supported by the Lucille P. Markey Charitable Trust (GMF).