CATION SPECIFICITY IN CELL VOLUME MAINTENANCE IN RECTAL GLAND CELLS OF THE DOGFISH (Squalus acanthias)

George Booz*, George M. Feldman, **, John W. Mills*** and Arnost Kleinzeller**, *Dept. of Pharmacology, T. Jefferson Univ., Philadelphia, PA 19107; **Depts. of Medicine and Physiology, Univ. of Pennsylvania, Philadelphia, PA 19104; ***Dept. of Anatomy, Dartmouth Med. School, Hanover, NH 03756.

Rectal gland cells swell massively when incubated in elasmobranch Ringer's in which Na⁺ is replaced by K⁺ or Rb⁺ (Kleinzeller et al., J. Comp. Physiol. 155B: 145, 1985). Such swelling is a predicted consequence of a simple Donnan system in which no active cation pump acts to oppose the driving force for Cl⁻, cation (and water) entry. On the other hand, cells swell but little when incubated in Li-substituted medium, although they lose Na⁺ and K⁺ and gain Li⁺ (and some Cl⁻). The ability of the cells to maintain their volume in high-Li⁺-Ringer's does not require metabolic energy nor involve the Na,K-ATPase (Kleinzeller et al., Bull. 26: 163, 1986). The cation specificity of the swelling process, and the basis for the difference in the cell response to K⁺ and Li⁺ media were now explored. Details of experimental procedures were given previously (Kleinzeller et al., 1985).

Of seven cations now tested K+, NH⁺ and trimethylamine (Tri-MA) caused swelling 25% (Fig. 1). The swelling in high NHt at 2 h exceeded that in high-K+ Ringer's by some 80%; this additional swelling reflects the contribution of the bicarbonate system (8 mM HCO_3 ; 1% CO_2 in air) [Feldman et al., this Bull.]; in high NHA media with a tris buffer the swelling was similar to that in high-K⁺. Cations which share with K⁺ sites on the Na-K-ATPase ans some channels (Rb+, NHt) cause massive swelling. The swelling produced by the rapidly permeant tri-MA relates to the lipid solubility of the non-dissociated base, and its subsequent intracellular dissociation (Ziyadeh et al., this Bull.). Li+, guanidinium (Gua+) and Cs+ produce little swelling. Tetramethyl-(TMA) and tetraethyl-ammonium (TEA) caused a slight shrinkage. With all cations tested there was a rapid loss of tissue Na+ to values around 35 mequiv./kg DW, corresponding to an intracellular Na+ of 15 mM. With all cations (except K+) there was also a large loss of tissue K+ (from 320 meguiv./kg DW, control, to some 80 meguiv), the bulk occuring within 1 h. Judging from the changes in cell volume and the loss of K⁺ all cations tested are permeant (NH \pm > Tri-MA+>Cs+> Li+> Gua+>TMA+>TEA+). The route by which Li⁺ enters the cells is not know. Phloretin, (0.4 mM) DIDS (0.1 mM), ouabain (0.05 mM), amiloride (1 mM) and bumetanide (0.1 mM) had no effect on Li+ uptake in high-Li+ Ringer's.

Approximately 25% of K⁺ remains in the tissue after 3 h incubation in high Li⁺. The possibility was explored that the cells had not reached a steady state, and hence the swelling in Li⁺ was less than in high K⁺. After 12 h incubation, the cells showed only a 20% swelling in high-Li⁺ medium, a value close to that found in Na⁺ - medium containing 0.5 mM ouabain. Also, the Cl⁻ Donnan ratios for these two conditions showed identical values, with a steady state at 2-4 h.

The K^+ -induced swelling is reversible in the absence of Na⁺ (high-Li⁺-medium).

The observation that cells in Li⁺-media are able to maintain a Donnan distribution of electrolytes for 12 h without the operation of the Na-pump, and with little swelling, requires a re-evaluation of the nature of the K⁺ (Rb⁺, NH⁺)-induced swelling. It is suggested that a physical constraint, such as the cytoskeleton, may represent the physical force which prevents the cells from swelling; the actin filaments dissociate when intracellular K⁺ is elevated, permitting an increased uptake of K⁺, Cl⁻, and H₂O. The finding that, as opposed to K⁺, exposure of the cells to even 12 h in high-Li⁺ medium did not produce major changes of the cells structure seen by light-microscopy, nor any changes in the cellular arrangement of actin, is consistent with the above view. The excessive swelling in NH[±] medium reflects the fact that NH[±] crosses the membrane in part as NH₃ with subsequent intracellular dissociation (Feldman et al., unpublished); the increased osmotic pressure then produces additional swelling.

This study was supported in part by the NIEHS-SCOR grant to MDIBL (AK).

Fig. 1 Effect of cations on water content of rectal gland cells in % of control (Na⁺-medium); 2 h incubation. Values <u>+</u> SE (n = 4-5).