POTASSIUM MEMBRANE CONDUCTANCE IN RETINAL GLIAL CELLS OF TELEOST AND ELASMOBRANCH FISHES (ALOSA PSEUDOHARENGUS AND SQUALUS ACANTHIAS)

Eric A. Newman

Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston Massachusetts 02114.

Müller cells, the principal glial cells of the vertebrate retina, are selectively permeable to K^+ . This K^+ conductance is not distributed uniformly over the cell surface (Newman, J. Neurosci. 7:2423, 1987). In amphibians and in mammals with avascular retinas, K^+ conductance is concentrated in the cell's endfoot. In vascularized mammalian species, high K^+ conductance is also found on and near the cell soma. The distribution of K^+ conductance in Muller cells of fishes has not been determined, although it has been predicted to resemble the pattern found in amphibians. In the present study, the K^+ conductance distribution of Muller cells was measured in two species, the alewife (Alosa Pseudoharengus), a teleost and the spiny dogfish (Squalus acanthias), an elasmobranch.

Measurements were made on freshly dissociated Muller cells, prepared by a modification of a previous dissociation procedure (Newman, J. Neurosci. 7:2423, 1987). Fish were dark adapted overnight in their holding tanks and then killed by decapitation. Pieces of retina were isolated from the back half of the eye, minced, placed in Ca²⁺⁻, Mg²⁺⁻free (CMF) Ringer's solution and triturated gently with a large-bore Pasteur pipette to break up the vitreous humor adhering to the retina. Retinal pieces were then incubated in CMF Ringer's solution containing 0.5 mg/ml papain and 10 mM cysteine for 30 minutes at 18°C. Retinal pieces were rinsed twice in normal Ringer's solution containing 0.1% bovine serum albumen (BSA) and placed on ice in Ringer's solution containing 0.1% DNAase.

The retinal tissue was maintained on ice for 2 to 4 hours and then triturated using a series of Pasteur pipettes with decreasing bore size. Trituration continued until only small (approximately 1 mm) pieces of retinal tissue remained. Trituration of these small pieces yielded dissociated cells rich in Muller cells. The supernatant from the final trituration was placed in a chamber, perfused with normal Ringer's solution and viewed in a compound microscope with differential interference optics and a video system.

The composition of the Ringer's solutions used in the study is given in Table 1. The elasmobranch Ringer's solution contains more Na⁺ and is somewhat hypertonic compared to elasmobranch plasma. These discrepancies are not believed to have appreciable altered the results, however, because large changes in osmolality and Na⁺ concentration have little effect on Müller cell membrane properties in other species.

Isolated cells were continually perfused with a bicarbonate Ringer's solution maintained at 15 to 18°C. Cell membrane potential was recorded with suction electrodes filled with an intracellular solution of the same osmolarity as the perfusate. The distribution of K⁺ conductance across the cell surface was determined by a method previously described (Newman, J. Neurosci. 5:2225, 1985). Briefly, cells were depolarized by localized increases the extracellular K⁺ concentration ([K⁺]₀) produced by pressure-ejecting an 'ejection solution' containing 15 mM K⁺ from an extracellular pipette. The amplitude of cell depolarizations to such localized [K⁺]₀ increases are directly proportional to the K⁺ membrane conductance of that cell region exposed to the [K⁺]₀ increase (Newman, J. Neurosci. 5:2225, 1985).

The membrane potential (E_m) of Müller cells of both species was high and near the K⁺ equilibrium potential (E_K) , indicating that the cell membrane was selectively permeable to K⁺. For stable recordings, E_m of alewife cells was -71 ± 1.7 mV (mean ± SEM, n=16) and E_m of dogfish cells was -90.4 + 1.4 mV (n=10). The values of E_K were -100 and -108 mV respectively.

Cell input impedance was measured by passing depolarizing constant current pulses through the recording electrode. Input resistance of Müller cells was $26.4 \pm 1.7 \text{ M}\Omega$ (n=15) in alewife and $38.0 \pm 4.5 \text{ M}\Omega$ (n=19) in dogfish. The cell time constant was $11.1 \pm 1.2 \text{ ms}$ (n=22) in alewife and $7.6 \pm 0.9 \text{ ms}$ (n=19) in dogfish.

Table 1. Composition of Ringer's solutions.

Solution	NaCl	KCI	NaHCO3	CaCl ₂	MgCl2	MgSO4	NaH2PO4	Dextrose	Urea	TMAO
Teleost										
Ringer	148	3	8	1.6		1	2.7	10		
Intra.		170								
Eject.	155	15								
<u>Elasmobra</u>	nch									
Ringer	290	4	8	5	2	1	1	10	350	77
Intra.		320							350	77
Eject.	305	15							350	77

Concentrations are given in mM. For CMF Ringer, the CaCl₂, MgCl₂ and MgSO₄ were omitted from the Ringer formulas. Solutions were bubbled with 1% CO₂ in O₂. Abbreviations: Intra., intracellular recording solution; Eject., ejection solution; TMAO, trimethylamine-N-oxide dihydrate.

The impedance of dogfish cells which were missing their proximal process and endfoot was also determined. The resistance of these endfoot-shorn cells was $749 \pm 60.6 \text{ M}\Omega$ (n=13), indicating that almost all of the cell input conductance is localized to the endfoot and proximal cell process in this species. The cell time constant was $95.2 \pm 7.4 \text{ ms}$ (n=13). E_m of endfootless dogfish cells was $-64.8 \pm 3.8 \text{ mV}$ (n=13), significantly less than E_m of cells with their endfeet intact. This difference in E_m suggests that the membrane of the soma and distal cell process is less selectively permeable to K⁺ than is the membrane of the endfoot and/or proximal process in this species.

Results of the K⁺ ejection experiments are summarized in Table 2. In both species, K⁺ ejections onto the endfoot evoked much larger cell depolarizations than did ejections onto other cell regions. These results demonstrate that the K⁺ conductance of fish Müller cells is localized, to a great extent, in the endfoot and confirm the conclusion reached from the impedance measurements in intact and endfoot-shorn dogfish cells which also suggest that most cell conductance is localized to the endfoot.

	K+ ejection location									
Species	A	В	С	D	Е	F	G	H		
Alewi fe	100	42.2 <u>+</u> 5.7	10.3 <u>+</u> 2.0	8.8 <u>+</u> 1.2	11.7 <u>+</u> 1.1	6.9 <u>+</u> 2.3				
Dogfish	 100	40.7 <u>+</u> 5.3	26.9 <u>+</u> 4.3	22.9 <u>+</u> 5.3	13.0 <u>+</u> 2.1	8.6 <u>+</u> 1.1	7.0 <u>+</u> 1.0	7.8 <u>+</u> 1.0		

Table 2. Relative magnitudes of Muller cell depolarizations evoked by focal K+ ejections.

Values represent mean \pm SEM of individual K+ responses, expressed as a percentage of the endfoot response of each cell. Ejection site locations: A, endfoot; B, C and D, proximal, mid and distal portion of proximal process; E, soma; F, G, H, proximal, mid and distal end of distal process.

It was previously predicted that in Muller cells of all species with avascular retinas the cell's K^+ conductance is largely localized to the endfoot. The present results confirm this finding for fishes, which have avascular retinas. As in other species, the non-uniform distribution of K^+ conductance may be important in regulating $[K^+]_0$ within the retina and in generating components of the electroretinogram.

Supported by a Lucille P. Markey Trust grant to the Mt. Desert Island Biological Laboratory and by National Institutes of Health grant EY 04077.