FURTHER STUDIES ON AMMONIA EXCRETION IN A MARINE TELEOST (MYOXOCEPHALUS OCTODECIMSPINOSUS)

J. B. Claiborne and David H. Evans Department of Biology, Georgia Southern College, Statesboro, GA Department of Zoology, University of Florida, Gainesville, FL

In a previous study, we examined the effects of NH4Cl infusion on the acid-base balance of the long-horned sculpin (Claiborne & Evans, Bull. MDIBL $\underline{24}$:24-25, 1984). NH4Cl induced a plasma acidosis which was due to a rapid transfer of NH3 to the surrounding water while the remaining protons were eliminated more slowly. It was likely that NH3 made up a significant proportion of the total ammonia ($T_{amm} = NH_3 + NH_4^+$) excreted. To further test this proposition, we have duplicated the experimental protocol described previously (Claiborne & Evans, ibid., 1984), but in the present experiments, NH4HCO3 was utilized as the carrier for the ammonia load. Following each infusion, internal acid-base balance (plasma pH and Tco2, from which Pco2, and [HCO3⁻] were calculated), plasma T_{amm} , and the net transfers of ammonia (*NH4⁺) and bicarbonate (*HCO3⁻) between the animal and the external water, were monitored over the succeeding 20 hours (see Claiborne and Evans, this volume, for details).

In each of the sculpin $(170 \pm 15 \text{ grams}, n=5, \text{ mean} \pm \text{S.E.})$ infusion of 5 mMole/kg NH₄HCO₃ elicited several changes in the measured acid-base parameters. Both plasma T_{amm} and T_{CO_2} increased rapidly after the infusion (plasma T_{amm} control: 0.24 ± 0.06 mM, 5 min. post-infusion: 4.62 ± 0.34 mM; T_{CO_2} control: 4.78 ± 0.24 mM, post infusion: 11.50 ± 0.41). T_{amm} returned to control values within 2 hours, while T_{CO_2} required 4 hours to regain normal levels. Blood pH varied only slightly (from 7.81 at hour 2 to 7.73 at hour 8) around the pre-infusion pH of 7.78 ± 0.01 . Plasma P_{CO_2} increased immediately after the infusion (from 1.8 to 4.7 torr), and then slowly declined to control levels within 4 hours. Both $-N_1H_4^+$ and $-H_{CO_3}^-$ were elevated subsequent to the infusion, and within 2 hours, -75% of the respective $N_1H_4^+$ and $H_{CO_3}^-$ load had appeared in the external water. The rate of $H_{CO_3}^-$ excretion remained significantly above the control rate for up to 8 hours post-infusion.

The present data agree with our earlier findings (Claiborne & Evans, ibid., 1984). Plasma Tamm rapidly declined within several hours of the infusion (via an increased loss of T_{amm} into the water). T_{amm} was eliminated more rapidly from the extracellular space than H^+ and/or HOO_3^- . Had a portion of the total infused ammonia been excreted in the form of NH4+, a plasma alkalosis should have resulted (due to the remaining infused HCO3-). Indeed, had all T_{amm} been lost as NH_4^+ , the measured post-infusion plasma $[HCO_3^-]$ of 11.25 mM in combination with the control plasma Pco2 of 1.8 torr would have effected a serosal pH value of ~8.12 (calculated using solubility and pK' values derived from Boutilier et. al., in "Fish Physiology", eds. W.S. Hoar and D.J. Randall, Vol Xa, pp. 401-430, 1984). In contrast, if a majority of the Tamm transfer was due to the release of NH3, the resulting equimolar augmentation of plasma [H+] and [HCO3-] should have been reflected by an increase in plasma Since the measured post-infusion blood pH was only elevated slightly (0.03 units) from control values, and a ~2.5x increase in plasma Pco2 was concurrently observed, we would again propose that this species of marine teleost may utilize NH3 excretion to compensate for an elevation of internal (Funded by a Faculty Research Grant from GSC to JBC and NSF PCM 83-02621 to DHE)