

## RESEARCH REPORTS

1969 #1

THE DISPOSITION OF  $^3\text{H}$ -DDT BY Squalus acanthias

R. H. Adamson and D. P. Rall, National Cancer Institute, National Institutes of Health, Bethesda, Md.

The disposition of chlorophenothane, commonly known as dichlorodiphenyltrichloroethane or DDT, was studied in S. acanthias using ring labeled  $^3\text{H}$ -DDT obtained from New England Nuclear. Preliminary analysis of some data based on the assumption that all radioactivity is DDT is presented in Tables 1 and 2. DDT was dissolved in DMSO and injected i.a. at doses of 0.5 mg/kg. The compound rapidly disappears from plasma, but little radioactivity is found in the cerebrospinal fluid at 4-1/2 or 24 hours. However, a significant amount of  $^3\text{H}$ -DDT was found in the gall bladder bile at 4-1/2 and 24 hours, suggesting that one of the pathways of disposition of DDT or its metabolites in the dogfish is via biliary excretion. Other tissues from these fish are presently being analyzed for radioactivity and future studies will utilize the  $^{14}\text{C}$ -labeled compound and gas chromatography to further elucidate the fate of DDT in marine species.

Table 1

## PLASMA, CSF, AND BILE LEVELS OF DDT IN THE DOGFISH

| Dogfish no., sex, wt |        | Time (hrs) | $\mu\text{g}/\text{ml}$ |
|----------------------|--------|------------|-------------------------|
| 1, Male, 2.4 kg      | Plasma | 1/2        | 1.58                    |
|                      |        | 1          | 0.70                    |
|                      |        | 4-1/2      | 0.17                    |
|                      | CSF    | 4-1/2      | 0.014                   |
|                      |        | 4-1/2      | 0.03                    |
|                      | Bile   |            |                         |
| 2, Female, 2.3 kg    | Plasma | 1/2        | 2.76                    |
|                      |        | 1          | 1.10                    |
|                      |        | 4-1/2      | 0.13                    |
|                      | CSF    | 4-1/2      | 0.0002                  |
|                      |        | 4-1/2      | 0.014                   |
|                      | Bile   |            |                         |

Table 2  
PLASMA, CSF, AND BILE LEVELS OF DDT IN THE DOGFISH

| Dogfish no., sex, wt |        | Time (hrs) | μg/ml |
|----------------------|--------|------------|-------|
| 3, Female, 3.0 kg    | Plasma | 1/2        | 2.68  |
|                      |        | 1          | 1.61  |
|                      |        | 4          | 0.21  |
|                      |        | 6          | 0.13  |
|                      |        | 9          | 0.088 |
|                      |        | 18         | 0.049 |
|                      |        | 24         | 0.043 |
|                      | CSF    | 24         | 0.006 |
|                      | Bile   | 24         | 0.79  |
| 4, Female, 2.3 kg    | Plasma | 1/2        | 1.60  |
|                      |        | 1          | 0.59  |
|                      |        | 4          | 0.12  |
|                      |        | 6          | 0.09  |
|                      |        | 9          | 0.058 |
|                      |        | 18         | 0.03  |
|                      |        | 24         | 0.022 |
|                      | CSF    | 24         | 0.003 |
|                      | Bile   | 24         | 0.3   |

1969 #2

DETERMINATION OF DDT ISOMERS AND METABOLITES IN SOME MARINE ORGANISMS

R. H. Adamson, J. B. Sullivan, and D. P. Rall, Laboratory of Chemical Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Md. and Hazleton Laboratories, Inc., Falls Church, Va.

Chlorinated hydrocarbon pesticide residues have been found in fish from remote streams and from the oceans and even in penguins and seals from the Ross Sea area of Antarctica (Nature, 210:670, 1966).

The results to be presented in this report were obtained from specimens collected from Leland Cove, near Laboratory Point, a few from laboratory tanks, and the dogfish from Frenchman Bay. Specimens were frozen in individual plastic bags, transported frozen to Bethesda, and analyzed for DDT isomers and metabolites by the procedures given in the sections, indicated below, contained in the Pesticide Analytical Manual, Volume I, Second Edition, 1968, published by the Food and Drug Administration, U. S. Department of Health, Education, and Welfare.

Each sample was first separated from any hard shell-like material, as in the case of shell-fish, and ground in a blender or food chopper when necessary to obtain a homogeneous sample. A representative 20-gram portion was taken for analysis. If the total weight of sample was less than 20 grams, the entire sample was analyzed.