1963 #15

EQUALITY OF H⁺ AND CL⁻ TRANSPORT BY GASTRIC MUCOSA OF <u>Squalus acanthius</u> C. A. M. Hogben, University of Iowa, Iowa City, Iowa

A distinctive feature of the isolated gastric mucosa of the dogfish is the absence of a significant transmucosal electrical potential difference. Previous study had demonstrated that the Cl⁻ ion is actively transported during H⁺ secretion but the possibility of another abherent ion transport canceling a transport of Cl⁻ ion in excess of H⁺ had not been excluded. For paired gastric mucosae from 12 fish values in μ Eq. cm⁻². hr⁻¹ were obtained: Cl⁻ flux serosa to mucosa 5.8 ± 0.4, mucosa to serosa 4.5 ± 0.2 and H⁺ secretion 1.3 ± 0.1. Consequently the dogfish does differ from teleosts and other vertibrates in failing to actively transport Cl⁻ in excess of H⁺ and thus generate a short-circuit current which would give rise to an epithelial potential.

Elasmobranchs differ from other vertebrates; in having a higher interstitial $[Cl^{-}]$ concentration and have in common with other fish a low arterial pCO₂ + higher pH. Exposure of 8 mucosae to solutions with either a $[Cl^{-}]$ of 82 mEq/1 (but made iso-osmotic with sucrose) or 1% CO₂ (with 30 mEq/1 HCO₃) had no significant influence on the mucosal potential.

Substitution of Cl^{-} by SO_{4}^{-} or the isethionate ion did not induce a "reversed" potential. In confirmation of previous work, the mucosa secreted H^{+} against an adverse potential difference of 75 ml and the spontaneous potential was not materially changed by carbachol stimulation or SCN inhibition.

1963 #16

ISOLATED DOGFISH RECTAL GLAND: ELECTRICAL PARAMETERS, SODIUM AND CHLORIDE FLUX

J. P. Kalas and C. A. M. Hogben, University of Iowa, Iowa City, Iowa

Because of the secretion of a remarkably concentrated solution of sodium chloride by the rectal gland of <u>Squalus acanthius in vivo</u>, the following observations on the isolated gland are reported even though secretion was not elicited in vitro.

The fish received 10 ml of 6% NaCl subcutaneously 2 hours before the experiment. After being split longitudinally, each of two 0.5 cm² portions of the gland were mounted between chambers with both surfaces exposed to 4 ml of saline (Na 252, K 10, Ca 10, Mg 4, Cl 240, HCO₃ 30, HPO₄ 2, SO₄ 4 and glucose 25 mEq/1; 5% CO₂, 95% O₂) at 21.1 \pm 1.4°C. Wet weight 0.35 gms cm⁻². Values are given as means and standard errors of paired observations on blands obtained from 6 fish.

The spontaneous transmural potential difference was insignificant; $0.27 \pm .44$ mV. with the mucosal surface positive to serosal surface. The D.C. electrical conductance was $1.56 \pm .23$ millimhos. cm⁻² and increased 30% over 5 hours.

By double-labelling experiments with Na²² and Cl³³, flux was determined, after 4 hours to attain an isotopic steady state, over 4 hourly periods. One portion of the gland was used for the serosa to mucosa and the other for the mucosa to serosa flux. The fluxes in uEq.cm⁻².hr⁻¹ were for Na 0.53 \pm .07, 0.53 \pm .31 and for Cl 0.68 \pm .15, 0.70 \pm .12 serosa to mucosa and mucosa to